
Scripting for Biologists
(or, how to get by just fine without the fancy CS degree)

Vijay Ramani, PhD
Principal Investigator / Sandler Fellow

Dept. of Biochemistry & Biophysics, UCSF

Curriculum adapted from:
Seungsoo Kim, Shendure Lab; Cecilia Noecker, Borenstein Lab

University of Washington

About me!
From:
Short Hills, NJ

Education:
BSE, Chemical Engineering (2012)

PhD, Genome Sciences (2017)

My lab is interested in:
• High-throughput methods

• Single-cell sequencing technology development

• Transcriptional regulation; chromatin architecture

• Metabolic control of chromatin & transcription

Don’t hesitate to e-mail me (vijay.ramani@ucsf.edu /
vij.ramani@gmail.com) if you have questions about this
material, science, grad school, rotations, etc.

mailto:vijay.ramani@ucsf.edu
mailto:vij.ramani@gmail.com

Goals for Today’s Session

I. Intro to the command line / conda

II. Learn the basics of coding in Python

III. Apply some of those basics to elementary bioinformatics

problems

IV. Learn about Numpy, Scipy, Pandas and other data analysis /

visualization tools available to you!

Don’t hesitate to stop me to ask questions!

Syllabus for Today’s Session

I. Why code and what the heck is a command line?

(30 min.)

[5 min. break]

II. Introduction to Coding & Python
(30 min.)

[5 min. break]

III. Introduction to Functions and Scripting
(30 min.)

[5 min. break]

IV. Practice Problems / Wrap-up
(30 - 45 min.)

Syllabus for Today’s Session

Download slides for today to follow along here!

https://github.com/VRam142/bootcamp

Navigating the command line

How to:
1.) Change directories and navigate a filesystem

2.) Install conda and activate a conda virtual environment

3.) Install packages using the conda command line interface

ls: list the contents of a directory

ls: list the contents of a directory

ls: the ls command can be modified to provide more information
about the contents of a directory (e.g. file size, read / write /execute
permissions, file ownership). I often use ls -latr, which
conveniently lists files in order of when they were last created /
modified.

cd: change directory

pwd: path to working directory (where am I now?)

cd: change directory to specified directory (where am I going?)

less: quickly view a text file

less: a better version of more (haha.) that allows us to quickly read
and page through any text file.

less: quickly view a text file

less: a better version of more (haha.) that allows us to quickly read
and page through any text file.

Text editors: nano, vim, emacs

nano [filename] allows us to edit that text file. Different
text editors have different graphical user interfaces (GUIs).

Installing anaconda / conda

Install anaconda:
1.) Download https://repo.anaconda.com/archive/
Anaconda3-2020.07-MacOSX-x86_64.sh

2.) Run:
bash ~/Downloads/Anaconda3-2020.07-MacOSX-
x86_64.sh

3.) Follow the prompts and complete the installation.

4.) Profit.

https://repo.anaconda.com/archive/Anaconda3-2020.07-MacOSX-x86_64.sh
https://repo.anaconda.com/archive/Anaconda3-2020.07-MacOSX-x86_64.sh

Installing anaconda / conda

Create and activate your first conda
environment

Installing anaconda / conda

Create and activate your first conda
environment

Why should we bother with virtual environments?

Compartmentalizing your coding workflows into virtual
environments allows others to reproduce your work by keeping
all of the ‘dependencies’ of your code in one convenient
location. Conda also solves program compatibility on the fly, so
you can be sure all of your installed programs will behave as
expected.

Use conda to install jupyter, salmon, tximport, and DESeq2

conda install -c anaconda jupyter
conda install -c bioconda salmon
conda install -c bioconda bioconductor-tximport
conda install -c bioconda bioconductor-deseq2

Break!

A Practical Introduction to Coding

Programming uses language…

…and languages have rules

Let’s eat Grandma!
Let’s eat, Grandma!

A Practical Introduction to Coding

Programming uses language…

…and languages have rules

Let’s eat Grandma!
Let’s eat, Grandma!

A Practical Introduction to Coding

Programming uses language…

…and languages have rules

Let’s eat Grandma!
Let’s eat, Grandma!

A Practical Introduction to Coding

Programming uses language…

…and languages have rules

Let’s eat Grandma!
Let’s eat, Grandma!

What is a program?

A program is a list of instructions,

written in a language your computer understands!

What is a program?

A program is a list of instructions,

written in a language your computer understands!

1: 98 degrees, 5 min.
2: 98 degrees, 30 sec.
3: 60 degrees, 30 sec.
4: 72 degrees, 1 min.
5: GOTO 2, 20 TIMES
6: 72 degrees, 10 min.
7: 4 degrees, FOREVER
8: END

What is a program?

A program is a list of instructions,

written in a language your computer understands!

Building blocks of a python program

Coding in python just requires some knowledge of the
basic topics:

• Variables

• Data Types

• Control logic & loops

• Argument parsing, File I/O, functions

Open up jupyter to code along!

Download the Tetrad Coding Bootcamp Notebook here:

Download the folder for this afternoon here:
https://ucsf.box.com/s/yyz1tydhtvw7twuvw4i3y7107ckaij6a

Variables in python

Variables are the “subjects” of the instructions you’re
giving the computer:

Data types in python

We initialize variables with different data types,
depending on what we’d like our program / script to
do!

Some useful data types are: string, int,
float, list, dict

Let’s go over them in some detail. In the interest of
time I won’t go over a bunch of other data types—
read about them in the Python resources we sent
over!

String, int, and float

String lets you represent text. When we print
something out to a file, we’re printing it out as a
string. We denote strings through the use of double
quotes (“”).

String, int, and float

Int and float are numerical representations with
differing precision. Integers cannot represent
fractional values, while floating point numbers can.

Recasting variables and a warning!

Python is dynamically typed, meaning that values,
not variables, are assigned data types! This is
generally incredibly convenient, but can lead to some
unwanted behaviors, too!

list and dict

In many cases we would like to store data in a
container: we can do this using special data types
called “data structures”

Lists are similar to “vectors” or “arrays,” and are
initialized using brackets [], and elements can be
addressed, reset, or subset using indexing (by
selecting start and end indices and using the :
operator).

Lists can be concatenated, and new items can be
added using + or list.append()

list and dict

list and dict

Dict are initialized using curly brackets { }, and
represent a special type of data structure: a “hash
table.”

Dictionaries are comprised of keys and values,
which are paired in a single data structure. Dictionary
keys must be immutable objects (strings, ints, floats,
etc.). Dictionary values can be ANYTHING. We look
up values in a dict using brackets [].

Dictionaries are very useful for “associating” data: key
membership (i.e. is a key in the dict or not) checks
and retrieving associated data is instantaneous!

list and dict

Loops & control logic

Now that we have some data types to play with, we
need to do something with these!

Your first python scripts will 1.) read in data as
variables, and then 2.) use logic & loops to process
that data.

Lets go over loops and control logic.

Loops

for loops:

Loops allow us to efficiently carry out many
operations.

Python very conveniently allows users to iterate over
many objects using loops. The syntax is generally as
follows (note the whitespace!):

for i in [list]:
 [do something]

Lots of stuff can be iterated over, including lists, dicts,
and strings!

Loops

Control logic & while loops

Logic in python:

Boolean logic allows us to control how a program
executes certain operations depending on the
situation.

Syntactically, we use if, else, and, or, elif
in combination with operators like ==, !=, <=,
>=, and in

Control logic & while loops

while loops

while loops:

while loops allow us to loop ad infinitum until certain
conditions are met.

Argument parsing & File I/O

We are using the jupyter notebook environment to script in Python,
but we should really only use notebooks for reproducible data
exploration + visualization. Reproducible data analysis pipelines should
be standalone scripts.

A script is a multi-line python file with the suffix *.py, which we execute
in bash as:

python *.py [argument1] [argument2] [etc.]

Now we are going to cover how to code command-line arguments,
read in, and write to files using custom Python scripts!

Argument parsing & File I/O

We read in command-line arguments using the sys module. These arguments can be stored in
variables as such:

import sys
cmd1 = sys.argv[1]#this is argument 1
cmd2 = sys.argv[2]#this is argument 2
cmd3 = sys.argv[3]#this is argument 3

Argument parsing & File I/O

We read in command-line arguments using the sys module. These arguments can be stored in
variables as such:

import sys
cmd1 = sys.argv[1]#this is argument 1
cmd2 = sys.argv[2]#this is argument 2
cmd3 = sys.argv[3]#this is argument 3

We read in files using the open() and .close() commands. Always remember to close your
file handles!! In this example, the file we want to open is command-line argument #1.

fhi = open(sys.argv[1], ‘r’)
fhi.close()

Argument parsing & File I/O

We read in command-line arguments using the sys module. These arguments can be stored in
variables as such:

import sys
cmd1 = sys.argv[1]#this is argument 1
cmd2 = sys.argv[2]#this is argument 2
cmd3 = sys.argv[3]#this is argument 3

We read in files using the open() and .close() commands. Always remember to close your
file handles!! In this example, the file we want to open is command-line argument #1.

fhi = open(sys.argv[1], ‘r’)
fhi.close()

We write to files using the open()function with the ‘w’ flag, and then use the print
function to and .close() commands.

fho = open(sys.argv[2], ‘w’)
print(“%s\t%s” % (string1, string2), file = fho)
fho.close()

Functions

Modular programming allows us to script functions that we think might be generally
useful, and then call these functions farther down the line. The syntax for defining
functions is:

def myFunction():

Functions can be used for anything! It’s probably best to illustrate how functions
work using an example. Copy the example in your jupyter notebooks into a new file
using your favorite TextEditor, and save that file as boot_camp.py.

Functions

Functions

Functions

We now have the building blocks for programs.
What are some things we might want to do?

BREAK

Part II: Problem Solving

Problem #1: Counting substrings

There are going to be times where we have a given sequence (say, ‘ACGT’),
and are interested in counting the number of times this sequence occurs in a
longer sequence (e.g. ‘ACGTGTAGATACGT’).

a.) Write a script that takes in the 4-mer ‘ACGT,’ and finds the number of times
in occurs in the longer sequence ‘ACGTGTAGATACGT’.

b.) Write a script that takes in the 6-mer ‘CACGTG,’ the file chr1.txt, and
prints out the number of times that 6-mer occurs in the sense orientation.

c.) Knowing the number of times a subsequence occurs in the context of a
longer sequence is great, but there will also be times we need to find where
that subsequence is. Write a script that takes in the same 6-mer and text file as
above, and writes a file with the locations (1-indexed!) of all matches in the
sense direction.

Problem #2: Counting all substrings
In sequence analysis, there are also going to be times where we might be interested in
the relative abundance of all sequences of length k (k-mers). Sometimes, we will want
to compute the extent to which certain k-mers are enriched or depleted with respect to
random sequence.

a.) Write a script that takes in chr1.txt as a command-line argument, tabulates the
relative abundance of 1-mers (i.e. A,C,G,T), 3-mers and 6-mers, and prints out these
counts to three separate text files.

b.) These files are super helpful, because we can now compute a background
distribution describing the frequency with which we expect to see a sequence of length
k in our data. For simplicity’s sake, let’s just say that the odds of drawing a sequence of
length k by chance is:

Using the previously computed 1-mer abundances, compute the probabilities of
observing all possible 3 and 6-mers, and then calculate the relative enrichment and
depletion (log2(observed / expected)) of observed 3- and 6-mers with respect to this
background distribution. What is the most enriched 6-mer? The most depleted 6-mer?

BREAK

Part III: Leveraging the Bioinformatics Ecosystem

https://www.smartdatacollective.com/big-data-big-money-roi-business-intelligence/

Part III: Leveraging the Bioinformatics Ecosystem

The beauty of using computing languages like Python and R is that
there are tons of packages & resources at your disposal—take
advantage of them when exploring and visualizing your data!

Important packages for Python:
Numpy
Scipy
SciKit-Learn
MatplotLib
pandas

Important packages for R*:
tidyverse
glmnet

*: we’ll go over a tiny bit of R before the end of the day

An aside: why use notebooks?

Notebooks give us a persistent, easy-to-navigate record of the
code / analyses / visualizations we’ve already generated. This lets
us quickly recap data experiments we’ve already performed, and
allows others to quickly reproduce our work!

Jupyter (referencing Julia, Python, and R) supports kernels for
three different languages, allowing us to seamlessly switch
between them in the same notebook.

An aside: why use notebooks?

Notebooks give us a persistent, easy-to-navigate record of the
code / analyses / visualizations we’ve already generated. This lets
us quickly recap data experiments we’ve already performed, and
allows others to quickly reproduce our work!

Jupyter (referencing Julia, Python, and R) supports kernels for
three different languages, allowing us to seamlessly switch
between them in the same notebook.

An aside: why use notebooks?

Notebooks give us a persistent, easy-to-navigate record of the
code / analyses / visualizations we’ve already generated. This lets
us quickly recap data experiments we’ve already performed, and
allows others to quickly reproduce our work!

Jupyter (referencing Julia, Python, and R) supports kernels for
three different languages, allowing us to seamlessly switch
between them in the same notebook.

Note: package installation is handled by anaconda, which should
already be installed on your laptops. Make sure numpy, scipy,
pandas, and matplotlib are installed!

Messing around with pandas & friends

The best way to learn how to use these packages is to just dive in
& use them, errors / bugs be damned.

I highly recommend using cookbook examples from Julia Evans
(https://jvns.ca/ ; https://github.com/jvns), which illustrate the core
functionalities of pandas and provide examples for basic data
visualization using matplotlib

https://jvns.ca/
https://github.com/jvns

A quick note on R

There are cases where you should be using R (i.e. certain bulk-
and single-cell RNA-seq analysis tools; a large number of powerful
statistical tools / tests); personally, I like to preprocess data in
Python, then use R for these fantastic data visualization / statistical
tools.

We don’t have time to dive into it, but you should all check out
tidyverse (https://www.tidyverse.org/packages/), Hadley
Wickham’s incredible suite of tools for data analysis in R. I make all
of my publication-quality plots using ggplot2 — I would
recommend trying it out, using your Jupyter notebook!

Follow this link (https://irkernel.github.io/) to make sure your
Jupyter install can switch between the Python and R kernels.

https://www.tidyverse.org/packages/
https://irkernel.github.io/

Closing remarks

We’ve covered a lot today, but hopefully the snippets of code
you’ve come up with will come in handy further down the line.

Remember, a lot of bioinformatics is actually quite straightforward
(e.g. read in a file, iterate through lines, reformat the data into a
table ready for pandas or R, compute some summary statistics).

Many of the statistically rigorous pipelines for analyzing data have
been well-worked out (e.g. DESeq for bulk RNA-seq; Monocle /
Seurat for scRNA-seq), and even for new applications the concepts
implemented there often represent good starting points.

Don’t be afraid to build on (with attribution, of course) the work of
bioinformaticians past! There’s a reason why all of this code is
open source.

